You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 August 2001Development of a remote coil magnetoelastic stress sensor for steel cables
Despite the increasing popularity of cable-stayed bridges there is no convenient and accurate means available to measure the forces in the cable stays. The measurement of the forces is important for monitoring excessive wind or traffic loadings, to gage the redistribution forces which may occur after seismic events, and for detecting corrosion via loss of the cross-section. Although magnetoelastic stress sensors have been extensively tested on many types of prestressing cables, and have demonstrated accuracies of < 1%, to-date they have been based upon a solenoid geometry, which is not practical for cable force measurements in existing bridges having hundreds of cables. In order to address this problem a magnetoelastic sensor for the direct measurement of stress in steel cables is currently under development. The sensor differs from previous magnetoelastic sensors in that the cable is magnetized by a removable C- shaped circuit, rather than by a solenoid. We report preliminary results on measurement of the initial permeability curve indicating adequate sensitivity to stress with this geometry, but further work is necessary to understand the influence of the more complicated field geometry on data reduction and calibration procedures.
The alert did not successfully save. Please try again later.
Ming L. Wang, George M. Lloyd, Ondrej Hovorka, "Development of a remote coil magnetoelastic stress sensor for steel cables," Proc. SPIE 4337, Health Monitoring and Management of Civil Infrastructure Systems, (3 August 2001); https://doi.org/10.1117/12.435584