You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 August 2001Asymmetric line profile measurement using angular scatterometry
Scatterometry is an optical measurement technology based on the analysis of light scattered, or diffracted, from a periodic array of features. It is not an optical imaging technique, but rather a model based metrology that determines measurement results by comparing measured light scatter against a model of theoretical scatter signatures. Angular scatterometers in particular function by scanning the features to be measured through a range of incident angles, and measuring the light scattered into the zeroth, or specular, diffraction order. Prior work in angular scatterometry used the technique for the measurement of line profiles in resist and etched materials. In this work applications of scatterometry for the measurement of asymmetric line profiles (unequal sidewall angles, for example) are presented. Beginning with simulated results form the theoretical model, the importance of measuring through complementary (positive and negative) angles of incidence will be demonstrated. Then, actual measurement data from three different sample sets will be presented. The results show that the method has good sensitivity for measuring line asymmetry, and can therefore be used for qualifying processes for which symmetric results might be desired, such as lithography and etch processing.
The alert did not successfully save. Please try again later.
Christopher J. Raymond, Michael E. Littau, Todd Pitts, Peter Nagy, "Asymmetric line profile measurement using angular scatterometry," Proc. SPIE 4344, Metrology, Inspection, and Process Control for Microlithography XV, (22 August 2001); https://doi.org/10.1117/12.436769