Paper
24 August 2001 Photoresist outgassing at 157 nm exposure
Stefan Hien, Steve Angood, Dominic Ashworth, Steve Basset, Theodore M. Bloomstein, Kim R. Dean, Roderick R. Kunz, Daniel A. Miller, Shashikant Patel, Georgia K. Rich
Author Affiliations +
Abstract
Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering measures to overcome contamination by resist, such as optimizing the purge flow between the final lens element and wafer surface or utilization of a lens pellicle.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stefan Hien, Steve Angood, Dominic Ashworth, Steve Basset, Theodore M. Bloomstein, Kim R. Dean, Roderick R. Kunz, Daniel A. Miller, Shashikant Patel, and Georgia K. Rich "Photoresist outgassing at 157 nm exposure", Proc. SPIE 4345, Advances in Resist Technology and Processing XVIII, (24 August 2001); https://doi.org/10.1117/12.436834
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fluorine

Polymers

Contamination

Oxygen

Photoresist materials

Absorption

Plasma

Back to Top