You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 August 2001Sensor expansion through integration of microscanning and superresolution algorithms
The spatial resolution of under sampled or diffraction limited images can be improved through micro scanning and super-resolution technologies. The objective of this Air Force Phase Ii Small Business Innovative Research was to develop and demonstrate real-time or near real-time micro scanning and super-resolution algorithms using passive millimeter wave imagery. A new super-resolution algorithm based on expectation-maximization was developed which is insensitive to missing data, incorporates both positivity and smoothness constraints, and rapidly converges in 15 to 20 iterations. Analysis using measured data shows that the practical resolution gain that can be expected using this algorithm is less than a facto of two. A new micro scanning algorithm was developed and demonstrated that can reliably detect less than one fifth of an IFOV displacement using field test data. The iteration of the super-resolution and microscanning algorithms was demonstrated and resolution gains of four to six times can be achieved if the image is under sampled by a factor of two or three. Consequently, it makes sense to use a wide under sampled FOV sensor in which high spatial resolution can be obtained as desired using micro scanning and super-resolution techniques.
The alert did not successfully save. Please try again later.
William R. Reynolds, Denise Talcott, Michael C. Roggemann, John W. Hilgers, Timothy J. Schulz, "Sensor expansion through integration of microscanning and superresolution algorithms," Proc. SPIE 4373, Passive Millimeter-Wave Imaging Technology V, (21 August 2001); https://doi.org/10.1117/12.438133