You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 August 2001Synthesizing invariant 3D rigid scattering centers
Automatic Target Recognition (ATR) is difficult in general, but especially with RADAR. However, the problem can be greatly simplified by using the 3-D reconstruction techniques presented at SPIE[Stuff] the previous 2 years. Now, instead of matching seemingly random signals in 1-D or 2-D, one must match scattering centers in 3-D. This method tracks scattering centers through an image collection sequence that would typically be used for SAR image formation. A major difference is that this approach naturally allows object motion (in fact the more the object moves, the better) and the resulting 'image' is a 3-D set of scattering centers scattering centers directly from synthetic data to build a database in anticipation of comparing the relative separability of these reconstructed scattering centers against more traditional approaches for doing ATR.
The alert did not successfully save. Please try again later.
Gregory D. Arnold, Rifka Claypool, Vincent J. Velten, Kirk Sturtz, "Synthesizing invariant 3D rigid scattering centers," Proc. SPIE 4382, Algorithms for Synthetic Aperture Radar Imagery VIII, (27 August 2001); https://doi.org/10.1117/12.438233