You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 March 2001Integer wavelet transformations with predictive coding improves 3D similar image set compression
Lossless compression techniques are essential in archival and communication of large amounts of homogeneous data in radiological image databases. This paper exploits dependencies that exist between the pixel intensities in three dimensions to improve compression for a set of similar medical images. These 3-D dependencies are systematically presented as histograms, plots of wavelet decomposition coefficients, feature vectors of wavelet decomposition coefficients, entropy and correlation. This 3-D dependency is called set redundancy for medical image sets. Predictive coding is adapted to set redundancy and combined with integer wavelet transformations to improve compression. This set compression improvement is demonstrated with 3-D sets of magnetic resonance (MR) brain images.
The alert did not successfully save. Please try again later.
Xiaojun Qi, John M. Tyler, Oleg S. Pianykh, "Integer wavelet transformations with predictive coding improves 3D similar image set compression," Proc. SPIE 4391, Wavelet Applications VIII, (26 March 2001); https://doi.org/10.1117/12.421205