You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 October 2001Infrared polarization measurements of surface and buried antipersonnel landmines
Linear polarization of Thermal InfraRed (TIR) radiation occurs whenever radiation is reflected or emitted from a smooth surface (such as the top of a landmine) and observed from a grazing angle. The background (soil and vegetation) is generally much rougher and therefore has less pronounced linear polarized radiation. This difference in polarization can be used to enhanced detection of land mines using TIR cameras. A measurement setup is constructed for measurement of polarized TIR images. This setup contains a rotating polarization filter which rotates synchronously with the frame sync of the camera. Either a Long wave InfraRed (LWIR) or a Mid Wave InfaRed (MWIR) camera can be mounted behind the rotating polarization filter. The synchronisation allows a sequence of images to be taken with a predefined constant angle of rotation between the images. Out of this image sequence three independent Stokes images are calculated, consisting of the unpolarized part, the vertical/horizontal polarizations and the two diagonal polarizations. An initial model is developed that describes the polarization due to reflection of and emission from a smooth surface. This model predicts the linear polarization for a landmine `illuminated' by a source that is either hotter or cooler than the surface of the landmine. The measurement setup is used indoors to validate the model. The measurements agree well with the model predictions.
The alert did not successfully save. Please try again later.
Frank Cremer, Wim de Jong, Klamer Schutte, "Infrared polarization measurements of surface and buried antipersonnel landmines," Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, (18 October 2001); https://doi.org/10.1117/12.445468