You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 October 2001Multisensor neural network approach to mine detection
A neural network is applied to data collected by the close-in detector for the Mine Hunter Killer (MHK) project with promising results. We use the ground penetrating radar (GPR) and metal detector to create three channels (two from the GPR) and train a basic, two layer (single hidden layer), feed-forward neural network. By experimenting with the number of hidden nodes and training goals, we were able to surpass the performance of the single sensors when we fused the three channels via our neural network and applied the trained net to different data. The fused sensors exceeded the best single sensor performance above 95 percent detection by providing a lower, but still high, false alarm rate. And though our three channel neural net worked best, we saw an increase in performance with fewer than three channels, as well.
The alert did not successfully save. Please try again later.
Amber L. Iler, Jay A. Marble, Patrick J. Rauss, "Multisensor neural network approach to mine detection," Proc. SPIE 4394, Detection and Remediation Technologies for Mines and Minelike Targets VI, (18 October 2001); https://doi.org/10.1117/12.445429