You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 February 2002Microstructures formed on silicon wafer by CO2 laser irradiation
Laser bumps have been formed on the silicon surface with anisotropic patterns induced by the pulsed CO2 laser under the backside effect conditions. The microstructures are formed with periodic patterns, and vary with the laser parameters. The parallel narrow fringes have period around 2 micrometers , and the fringe orientation is in parallel with the laser polarization direction. The circular fringes with spacing around 1 micrometers appear when the laser energy increase. The fringe patterns were found to be independent on the laser pulses, therefore are re-writable. The bump formation mechanism is considered to be thermal capillary wave effect during the material melting and resolidification processes under laser irradiation. Whereas, the laser absorption may be induced by the hot electrons, or the thermal energy resulting from the laser interaction with the backside coating material.
The alert did not successfully save. Please try again later.
Weijie Wang, Yongfeng Lu, Chengwu An, Minghui Hong, "Microstructures formed on silicon wafer by CO2 laser irradiation," Proc. SPIE 4426, Second International Symposium on Laser Precision Microfabrication, (25 February 2002); https://doi.org/10.1117/12.456859