You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 December 2001Comparative properties of optically clear epoxy encapsulants
Three epoxy systems were evaluated for physical dn optical properties. The three systems chosen for the study were selected on the basis of their optical clarity, color and chemistry. Three distinctly different chemistries were chosen, aromatic epoxy-amine cured. Aromatic epoxy- anhydride cured and cycloaliphatic epoxy-anhydride cured. All three systems remained optically clear and water-white after full cure. The three selected systems were tested for physical properties, adhesion and light transmission properties. Light transmission was measured after thermal and humidity exposure. Adhesion was measured after humidity exposure only. Both of the epoxy-anhydride systems performed well in optical properties but poorer in adhesion as compared to the epoxy-amine system. The aromatic epoxy- amine system discolored badly during thermal exposure at 100 C. Data generated from this work will be used in selecting clear encapsulating materials for photonics applications. No single system offers optimal performance in all areas. The best compromise material is the aromatic epoxy-anhydride system.
The alert did not successfully save. Please try again later.
Maury Edwards, Yan Zhou, "Comparative properties of optically clear epoxy encapsulants," Proc. SPIE 4436, Wave-Optical Systems Engineering, (21 December 2001); https://doi.org/10.1117/12.451299