You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 October 2001Fabrication and performance of d33-mode lead-zirconate-titanate (PZT) MEMS accelerometers
Piezoelectric accelerometers fabricated from Lead-Zirconate-Titanate (PZT) thin films are expected to achieve higher sensitivities and better signal-to-noise ratios (SNR) in comparison with capacitive and piezoresistive accelerometers. This paper will present, for the first time, the fabrication and performance of piezoelectric, bulk-micromachined accelerometers using PZT thin films operating in the d33-mode. Using sol-gel techniques, 0.6 mm thick PZT films with high piezoelectric coefficients were deposited. Measurements on these PZT films show a remnant polarization Pr < 19 (mu) C/cm2, dielectric constants Er > 800, and d33 coefficient of 120 pC/N. The PZT accelerometers operating in the d33 mode were successfully fabricated. Interdigitated capacitors were used to achieve the d33 mode of operation and deep reactive ion etching was used to define the proof-mass of the accelerometers. Measurements on these accelerometers show sensitivities ranging from 0.85 - 1.67 mV/g with resonance frequencies ranging from 22.4 - 15.4 kHz respectively. In addition to the improved sensitivity, advantages of d33-mode accelerometers include use of thinner PZT films, and the ability to optimize the impedance of the device to achieve a higher SNR. The performance of MEMS d33-mode accelerometers will also be compare with the previously reported d31-mode accelerometers using PZT thin films.
The alert did not successfully save. Please try again later.
Han Geun Yu, Richard Wolf, Kan Deng, Lichun Zou, Srinivas Tadigadapa, Susan Troilier-McKinstry, "Fabrication and performance of d33-mode lead-zirconate-titanate (PZT) MEMS accelerometers," Proc. SPIE 4559, MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, (1 October 2001); https://doi.org/10.1117/12.443027