You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 October 2001Gryphon M3 system: integration of MEMS for flight control
By using distributed arrays of micro-actuators as effectors, micro-sensors to detect the optimal actuation location, and microelectronics to provide close loop feedback decisions, a low power control system has been developed for controlling a UAV. Implementing the Microsensors, Microactuators, and Microelectronics leads to what is known as a M3 (M-cubic) system. This project involves demonstrating the concept of using small actuators (approximately micron-millimeter scale) to provide large control forces for a large-scale system (approximately meter scale) through natural flow amplification phenomenon. This is theorized by using fluid separation phenomenon, vortex evolution, and vortex symmetry on a delta wing aircraft. By using MEMS actuators to control leading edge vortex separation and growth, a desired aerodynamic force can be produced about the aircraft for flight control. Consequently, a MEMS shear stress sensor array was developed for detecting the leading edge separation line where leading edge vortex flow separation occurs. By knowing the leading edge separation line, a closely coupled micro actuation from the effectors can cause the required separation that leads to vortex control. A robust and flexible balloon type actuator was developed using pneumatic pressure as the actuation force. Recently, efforts have started to address the most elusive problem of amplified distributed control (ADC) through data mining algorithms. Preliminary data mining results are promising and this part of the research is ongoing. All wind tunnel data used the baseline 56.5 degree(s) sweepback delta wing with root chord of 31.75 cm.
The alert did not successfully save. Please try again later.
Adam Huang, Chris Folk, Chih-Ming Ho, Z. Liu, Wesley W. Chu, Yong Xu, Yu-Chong Tai, "Gryphon M3 system: integration of MEMS for flight control," Proc. SPIE 4559, MEMS Components and Applications for Industry, Automobiles, Aerospace, and Communication, (1 October 2001); https://doi.org/10.1117/12.443022