You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 November 2001Cellular-automata-based modeling of the electrostatic self-assembly (ESA) fabrication process
The electo-static self-assembly process (ESA) has proved to be extremely successful in creating multi-layer coatings with properties that can be tailored for particular applications. In this process, almost any surface with charged functional groups can be used as a substrate. Alternate dipping in solutions having ions of opposite charge builds up the layers through ionic bonding. One particular application of this process could be to form multi-functional bio-compatible coatings on MEMS devices intended for use in-vivo. In this paper, we describe two different models of the process based on cellular automata. The output of the models consists of three parameters as a function of layer: ionic coverage, film height and film roughness. The results of the models are compared to experimental data to determine which of them more accurately describes the ESA process.
The alert did not successfully save. Please try again later.
William B. Spillman Jr., Tingying Zeng, Richard O. Claus, "Cellular-automata-based modeling of the electrostatic self-assembly (ESA) fabrication process," Proc. SPIE 4590, BioMEMS and Smart Nanostructures, (19 November 2001); https://doi.org/10.1117/12.454599