Paper
24 April 2002 Temperature dependence of dark current in a CCD
Author Affiliations +
Abstract
We present data for dark current of a back-illuminated CCD over the temperature range of 222 to 291 K. Using an Arrhenius law, we found that the analysis of the data leads to the relation between the prefactor and the apparent activation energy as described by the Meyer-Neldel rule. However, a more detailed analysis shows that the activation energy for the dark current changes in the temperature range investigated. This transition can be explained by the larger relative importance at high temperatures of the diffusion dark current and at low temperatures by the depletion dark current. The diffusion dark current, characterized by the band gap of silicon, is uniform for all pixels. At low temperatures, the depletion dark current, characterized by half the band gap, prevails, but it varies for different pixels. Dark current spikes are pronounced at low temperatures and can be explained by large concentrations of deep level impurities in those particular pixels. We show that fitting the data with the impurity concentration as the only variable can explain the dark current characteristics of all the pixels on the chip.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ralf Widenhorn, Morley M. Blouke, Alexander Weber, Armin Rest, and Erik Bodegom "Temperature dependence of dark current in a CCD", Proc. SPIE 4669, Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications III, (24 April 2002); https://doi.org/10.1117/12.463446
Lens.org Logo
CITATIONS
Cited by 87 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Charge-coupled devices

Diffusion

Dielectrophoresis

Electrons

Silicon

Data modeling

Diodes

Back to Top