Paper
17 May 2002 Adjunct processors in embedded medical imaging systems
Marc Trepanier, Iain Goddard
Author Affiliations +
Abstract
Adjunct processors have traditionally been used for certain tasks in medical imaging systems. Often based on application-specific integrated circuits (ASICs), these processors formed X-ray image-processing pipelines or constituted the backprojectors in computed tomography (CT) systems. We examine appropriate functions to perform with adjunct processing and draw some conclusions about system design trade-offs. These trade-offs have traditionally focused on the required performance and flexibility of individual system components, with increasing emphasis on time-to-market impact. Typically, front-end processing close to the sensor has the most intensive processing requirements. However, the performance capabilities of each level are dynamic and the system architect must keep abreast of the current capabilities of all options to remain competitive. Designers are searching for the most efficient implementation of their particular system requirements. We cite algorithm characteristics that point to effective solutions by adjunct processors. We have developed a field- programmable gate array (FPGA) adjunct-processor solution for a Cone-Beam Reconstruction (CBR) algorithm that offers significant performance improvements over a general-purpose processor implementation. The same hardware could efficiently perform other image processing functions such as two-dimensional (2D) convolution. The potential performance, price, operating power, and flexibility advantages of an FPGA adjunct processor over an ASIC, DSP or general-purpose processing solutions are compelling.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marc Trepanier and Iain Goddard "Adjunct processors in embedded medical imaging systems", Proc. SPIE 4681, Medical Imaging 2002: Visualization, Image-Guided Procedures, and Display, (17 May 2002); https://doi.org/10.1117/12.466963
Lens.org Logo
CITATIONS
Cited by 10 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Field programmable gate arrays

Image processing

Digital signal processing

Sensors

Imaging systems

Computing systems

Algorithm development

Back to Top