You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 May 2002Fast vessel identification using polyphase decomposition and intercomponent processing
Polyphase decomposition is a down sampling operation that produces a set of low-resolution representations of an image. Such representations themselves are different by a phase in frequency domain, hence called polyphase components. An inter-component processing operation extracts meaningful features by performing simple logical operations over selected components. This strategy is applied to angiographic analysis to develop a fast feature-oriented vessel identification technique, which consists of polyphase decomposition on a binary image, followed by inter-component processing. The inter-component processing among selected components produces a feature map in which a non-zero pixel indicates an occurrence of a vessel geometrical feature or pattern in the original image. Using feature templates, a sequence of vessel-featured maps is generated. Fast vessel identification is performed by fusing the feature maps and displaying them according to the emergence orders of vessel geometric features, such as position, diameter, length and direction. Collective display provides a method to visualize vessel features across multiple resolutions. High-speed performance is attributed to low-resolution representation of polyphase components and simple data manipulation of inter-component processing. The tradeoff of such vessel identification technique is associated with an uncertainty for accurate measurement, arising from the inherent translations in polyphase decomposition. Therefore, accurate vessel measurements will need refinement in the original image.
The alert did not successfully save. Please try again later.
Zikuan Chen, Sabee Y. Molloi, "Fast vessel identification using polyphase decomposition and intercomponent processing," Proc. SPIE 4684, Medical Imaging 2002: Image Processing, (9 May 2002); https://doi.org/10.1117/12.467135