You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 July 2002Bi/In bimetallic thermal resists for microfabrication, photomasks, and micromachining applications
Bilayer Bi/In thin films form thermal resists with many new microfabrication and micromachining applications due to their changed physical, chemical and optical characteristics after the laser exposures. Wavelength invariance has been shown from the results of both experiment and Airy Summation optical modeling. The modeling projects bimetallic resist sensitivity to be nearly constant at about ~7 mJ/cm2 from 248 to 13.4 nm and is still very sensitive at 1 nm in X-ray range. Two kinds of acid solutions were effective in developing the exposed films by removing the unexposed area. Both nitric acid mixture (HNO3:CH3COOH:H2O=1:3:6) and hydrochloride acid mixture (HCl:H2O2:H2O=1:1:48) give etching selectivity of exposed to unexposed area of larger than 60:1. The etch rate of unexposed area is about 2.6 nm/sec. The Bi/In resist can be stripped away by an RCA2 clean. Bi/In resist was successfully used as a mask layer for KOH anisotropic silicon etching process. Due to the unusual conductive property of its exposed and developed films, Bi/In has demonstrated that it can be used as a direct laser write electroplating resist material. Copper and nickel plating was carried out on developed Bi/In layers on various substrates such as Si wafers, glass slides, wet-oxidized wafers. Large optical transmission changes (OD>3.5 before exposure and OD<0.3 after exposure at I-line) indicate that Bi/In can be used as a direct-write photomask material.
The alert did not successfully save. Please try again later.
Glenn H. Chapman, Richard Yuqiang Tu, Marinko V. Sarunic, "Bi/In bimetallic thermal resists for microfabrication, photomasks, and micromachining applications," Proc. SPIE 4690, Advances in Resist Technology and Processing XIX, (24 July 2002); https://doi.org/10.1117/12.474201