You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 June 2002Brillouin optical fiber sensor for cryogenic thermometry
Supraconductive installations are now commonly used in large facilities, such as power plants and particle accelerators. This requires a permanent temperature control at very low temperature, but cryogenic temperature measurements in the 1-77K range requires expensive calibrated temperature probes. We report here the possibility to use stimulated Brillouin scattering in optical fibers for temperature sensing down to 1K. Such a technique offers the additional advantage to make possible distributed measurement, so that very large structures and systems can be controlled using a single fiber and a single analyzing instrument. In addition only one by-pass for the fiber is required as input to the cryogenic vessel, that is definitely a key advantage for the design and the energy loss. Brillouin scattering in optical fibers has never been investigated so far at temperature below 77K (nitrogen boiling point). This absence of interest probably results from the constant decrease of scattering efficiency that was observed while cooling the fiber down to 77K. Our measurements show the unexpected feature that scattering efficiency is significantly raised below 50K and is even much better than observed at room temperature. The relevance and the feasibility of the technique is demonstrated in real scale on the supraconductive magnets for the future world largest particle accelerator, namely the large hadron collider (LHC) at CERN Laboratory in Geneva.
The alert did not successfully save. Please try again later.
Luc Thevenaz, Alexandre Fellay, Massimo Facchini, Walter Scandale, Marc Nikles, Philippe A. Robert, "Brillouin optical fiber sensor for cryogenic thermometry," Proc. SPIE 4694, Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems, (27 June 2002); https://doi.org/10.1117/12.472623