You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 August 2002Ray-tracing approach for realistic hyperspectral forest canopies
A compelling figure-of-merit for synthetic sensor data generation is target acquisition performance relative to field data of similar scenarios. That is, if one synthesized a sensor data set from the ground truth of an actual field measurement, one would expect a realistic simulation to give rise to probabilities of target detection and identification, and false alarm rates comparable to that of the field data. This correlation would, of course, be expected to extend to both human and machine-based performance. Key to this correlation is realistic background synthesis, providing appropriate spatial and spectral competition with the target signatures for both man and algorithm. Hyperspectral target signature synthesis is fairly mature, while background modeling for target- competitive clutter leaves much to be desired. The authors herein detail a ray-tracing approach for rigorous hyperspectral background signature synthesis that focuses on trees and forest canopies, and synthesis techniques for producing spatial-spectral statistics consistent with field data. In addition, the authors present some of the hyperspectral synthesis components, including the signature model, which can be used in a multi-spectral mode for real- time EO/IR image synthesis.
The alert did not successfully save. Please try again later.
J. Russ Moulton Jr., Christopher E. Fink, "Ray-tracing approach for realistic hyperspectral forest canopies," Proc. SPIE 4718, Targets and Backgrounds VIII: Characterization and Representation, (6 August 2002); https://doi.org/10.1117/12.478828