You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 August 2002Neutron albedo imager for land mine detection
John E. McFee,1 H. Robert Andrews,2 Harry Ing,2 Thomas Cousins,3 Anthony A. Faust,4 Dean S. Haslip3
1Defense Research Establishment Suffield (Canada) 2Bubble Technology Industries Inc. (Canada) 3Defence Research Establishment Ottawa (Canada) 4Defence Research Establishment Suffield (Canada)
Neutron albedo land mine detection involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons which return. This technique has been studied since the 1950's, but only using non-imaging detectors. Without imaging, natural variations in hydrogen content in the soil, chiefly due to moisture, and surface irregularities, produce enough false alarms to render the method impractical in all but the driest conditions. This paper describes research to design and build a prototype landmine detector based on neutron albedo imaging. Realistic Monte Carlo simulations were performed to assess the signal-to-noise ratio for various soil types and moisture contents, assuming a perfect two dimensional neutron imaging system. The study showed that a neutron albedo imager was feasible for mine detection and that image quality could be good enough to significantly improve detector performance and reduce false alarm rates compared to non-imaging albedo detection, particularly in moist soils and where surface irregularities exist. After reviewing various neutron detector technologies, a design concept was developed. It consisted of a novel thermal neutron imaging system, a unique neutron source to uniformly irradiate the underlying ground and hardware and software for image generation and enhancement. Performance capability, including spatial resolution and detection times, were estimated by modeling. A proof-of-principle imager is now being constructed with an expected completion date of Spring 2002. The detector design is described and preliminary results are discussed.
The alert did not successfully save. Please try again later.
John E. McFee, H. Robert Andrews, Harry Ing, Thomas Cousins, Anthony A. Faust, Dean S. Haslip, "Neutron albedo imager for land mine detection," Proc. SPIE 4742, Detection and Remediation Technologies for Mines and Minelike Targets VII, (13 August 2002); https://doi.org/10.1117/12.479121