You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 July 2002Three-dimensional reconstruction from ISAR sequences
Inverse Synthetic Aperture Radar (ISAR) imagery provides an opportunity for 3D reconstruction, because it relies on target motion to provide cross-range resolution and is derived as a temporal sequence. As it moves, the target presents different aspects, which can be integrated to derive the third dimension. Tomasi and Kanade introduced a robust technique for recovering object shape and motion, based on factorization of a matrix that represents the 2D projection equations for a set of points on the target object, as observed in an image sequence. The technique has been applied to orthographic projection Tomasi and Kanade, paraperspective projection Poelman and Kanade, and perspective projection Han and Kanade, but encounters nonlinearities when applied to point perspective projection, which require iterative solution. ISAR projection is naturally well suited for application of the factorization technique because the projection equations are linear. 3D reconstruction may lead to improved performance for automatic target recognition (ATR) procedures and may also be used to enhance human visualization of iamged targets.
The alert did not successfully save. Please try again later.
Frank E. McFadden, "Three-dimensional reconstruction from ISAR sequences," Proc. SPIE 4744, Radar Sensor Technology and Data Visualization, (30 July 2002); https://doi.org/10.1117/12.488289