You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 December 2002HgCdTe long-wavelength infrared photovoltaic detectors formed by reactive ion etching
Reactive ion etching (RIE) is known to type convert p-type HgCdTe to n-type, thus providing a method for p-n junction formation for photodiode fabrication. Mid-wavelength infrared (MWIR) n-on-p photodiodes fabricated using RIE induced p-to-n type conversion have already been demonstrated and show excellent performance. This paper will report on the successful application of RIE junction formation technology for long-wavelength infrared (LWIR) HgCdTe photodiodes, and compares the device performance of photodiodes fabricated on vacancy and extrinsically doped p-type HgCdTe. The diode current versus bias voltage (I-V) characteristic of these devices have also been measured as a function of temperature in the range 20K to 200K with various junction areas. These results are compared in the light of detailed Hall measurement data obtained from type converted materials.
The alert did not successfully save. Please try again later.
Tam T. Nguyen, John M. Dell, Charles A. Musca, Jarek Antoszewski, Lorenzo Faraone, "HgCdTe long-wavelength infrared photovoltaic detectors formed by reactive ion etching," Proc. SPIE 4795, Materials for Infrared Detectors II, (5 December 2002); https://doi.org/10.1117/12.452276