You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 November 2002Incorporation of polarization into the DIRSIG synthetic image generation model
The Digital Imaging and Remote Sensing Synthetic Image Generation (DIRSIG) model uses a quantitative first principles approach to generate synthetic hyperspectral imagery. This paper presents the methods used to add modeling of polarization phenomenology. The radiative transfer equations were modified to use Stokes vectors for the radiance values and Mueller matrices for the energy-matter interactions. The use of Stokes vectors enables a full polarimetric characterization of the illumination and sensor reaching radiances.
The bi-directional reflectance distribution function (BRDF) module was rewritten and modularized to accommodate a variety of polarized and unpolarized BRDF models. Two new BRDF models based on Torrance-Sparrow and Beard-Maxwell were added to provide polarized BRDF estimations. The sensor polarization characteristics are modeled using Mueller matrix transformations on a per pixel basis. All polarized radiative transfer calculations are performed spectrally to preserve the hyperspectral capabilities of DIRSIG. Integration over sensor bandpasses is handled by the sensor module.
The alert did not successfully save. Please try again later.
Jason P. Meyers, John R. Schott, Scott D. Brown, "Incorporation of polarization into the DIRSIG synthetic image generation model," Proc. SPIE 4816, Imaging Spectrometry VIII, (8 November 2002); https://doi.org/10.1117/12.451545