Paper
23 September 2002 Optimization of cw-QC lasers for Doppler and sub-Doppler molecular spectroscopy
James F. Kelly, Robert S. Disselkamp, Robert L. Sams, Thomas A. Blake, Steven W. Sharpe, Dirk A. Richter, Alan Fried
Author Affiliations +
Abstract
Inter-subband (Type I) quantum-cascade (QC) lasers have shown the potential to generate tunable mid-IR radiation with narrow intrinsic linewidths (< 160 KHz in 15 mSec sweeps) and excellent amplitude stability (< 3 ppm averaged over minutes). Our bench-scale efforts to develop the Type I distributed feedback (DFB)-QC lasers for fieldable atmospheric chemistry campaigns, where multipass (Herriot or White) cells are used to enhance path-length, have not yet realized performance to the low intrinsic noise levels seen in these devices. By comparison, many operational systems' levels of noise-equivalent-absorbance (NEA) using Pb-salt lasers can routinely achieve at least one-order of magnitude better cw-performance, and with much lower powers. We have found that instability effets from weak back-scattered laser light -primarily from the Herriot cell- results in feedback-implicated technical noise well above the thermal and shot-noise of standard IR detectors. Of more fundamental concern is the fact that planar-stripe DFB-QC lasers undergo beam steering and transverse spatial-mode competitions during current tuning. It is the development of fully automated sub-ppbV sensitive IR chem-sensors. It is possible to reach low-ppm levels of absorptance change-detection (ΔI/I0) over small wavelength regions with careful alignment to 100 M Herriott cells, but extreme care in spatial filtering is critical. However in the case of optical configurations which preclude significant optical feedback and need for stringent mode coupling alignments, the cw-DFB-QC lasers show great promise to do high resolution sub-Doppler spectroscopy. By serendipitous events, a varient of 'mode- or level-crossing' spectroscopy was probably rediscovered, which may allow very high resolution, sub-Doppler features and/or hyperfine alignments to be probed with 'uni-directional' topologies. We will primarily discuss the basic features of the 'uni-directional' sub-Doppler spectroscopy concept in this report. It shows potential to be exploitable in multi-pass cells or ring configurations. The phenomena of satuation 'dips' in molecular transitions appear to be very accessible with sinusoidally current-modulated DFB-QC lasers. Observations of sub-Doppler structures, either induced by residual AM 'pulsation dips' and/or hyperfine level-crossing effects (due to weak Zeeman splittings by the earth's B-field) can be recovered with good contrast. If this phenomena is indeed implicated with long-lived coherent hyperfine alignments, due perhaps to coherent population trapping in 'dark-states,' then sub-Doppler signals from saturated 'level-crossings' can potentially be seen without recourse to expensive polarization optics, nor elaborate beam shaping and isolation techniques.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
James F. Kelly, Robert S. Disselkamp, Robert L. Sams, Thomas A. Blake, Steven W. Sharpe, Dirk A. Richter, and Alan Fried "Optimization of cw-QC lasers for Doppler and sub-Doppler molecular spectroscopy", Proc. SPIE 4817, Diode Lasers and Applications in Atmospheric Sensing, (23 September 2002); https://doi.org/10.1117/12.452124
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Modulation

Quantum cascade lasers

Frequency modulation

Doppler effect

Fermium

Absorption

Amplitude modulation

Back to Top