You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 July 2002Optimal multidimensional quantization for pattern recognition
In non-parametric pattern recognition, the probability density function is approximated by means of many parameters, each one for a density value in a small hyper-rectangular volume of the space. The hyper-rectangles are determined by appropriately quantizing the range of each variable. Optimal quantization determines a compact and efficient representation of the probability density of data by optimizing a global quantizer performance measure. The measure used here is a weighted combination of average log likelihood, entropy and correct classification probability. In multi-dimensions, we study a grid based quantization technique. Smoothing is an important aspect of optimal quantization because it affects the generalization ability of the quantized density estimates. We use a fast generalized k nearest neighbor smoothing algorithm. We illustrate the effectiveness of optimal quantization on a set of not very well separated Gaussian mixture models, as compared to the expectation maximization (EM) algorithm. Optimal quantization produces better results than the EM algorithm. The reason is that the convergence of the EM algorithm to the true parameters for not well separated mixture models can be extremely slow.
The alert did not successfully save. Please try again later.
Mingzhou Song, Robert M. Haralick, "Optimal multidimensional quantization for pattern recognition," Proc. SPIE 4875, Second International Conference on Image and Graphics, (31 July 2002); https://doi.org/10.1117/12.477142