You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 August 2003Fluorescence-lifetime-based pH sensing using resorufin
Accurate, non-contact pH sensing is of particular importance in the biological and clinical sciences. Fluorescence lifetime based pH sensing is potentially more useful than intensity based methods because of the reduced sensitivity to excitation source intensity variations, scattering effects, and photobleaching. In this work, we investigate the variation of fluorescence lifetime with pH for resorufin. The intensity averaged lifetime (τ) of resorufin sodium salt in 0.1M phosphate buffer shows an increase of > 3 ns over the 2 -10 pH range, with 90% of the signal change occurring between pH 4 and 8. The fluorescence is not quenched by chloride or oxygen and was unaffected by the ionic strength of the buffer. Resorufin is relatively insoluble in non-alkaline phosphate buffered solutions, but was estimated to increase by ~2 ns between pH 6 and 8. Resorufin and its sodium salt were both incorporated into sol-gels by either acid or base hydrolysis of tetra-methoxysilane (TMOS). Various surfactants were also added to the sol-gels in an attempt to optimise the fluorescence properties and pH sensitivity of the dyes, and to prevent cracking. The sols were then cast from petri-dishes or dip-coated onto acrylic and glass slides. The dyes retained their pH sensitivity, with showing an increase of approximately 2 ns over the pH range 6 - 8. However, leaching of the dye is observed at higher pH and attempt to minimise dye leaching and sol-gel cracking, poly(vinyl alcohol) (PVA) was cross-linked to the silica gel to form a more flexible matrix.
The alert did not successfully save. Please try again later.
Alan G. Ryder, Sarah Power, Thomas J. Glynn, "Fluorescence-lifetime-based pH sensing using resorufin," Proc. SPIE 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, (27 August 2003); https://doi.org/10.1117/12.463983