You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 December 2002Alternatives to Alternating Phase Shift Masks for 65nm
193nm lithography is very likely to be the pattern transfer method of choice for 65nm technology. This means lithography with a k1 factor in the range of 0.3, so strong resolution enhancement techniques (RET) are necessary. Until recently, alternating Phase Shift Masks (alt.PSM) seemed to be the only viable option. Rather stringent layout restrictions, complex mask manufacturing, and the throughput loss due to the required double exposure make this option rather costly. Double exposure of chromium masks or halftone (embedded) PSM with dipole illumination (DDL), or single exposure of chrome-less PSM (CPL) are evaluated as alternatives with proven resolution for the minimum feature size. Both techniques need sub-resolution features to compensate for their sub-optimum performance on either isolated lines or on lines of about twice the minimum width (in case of CPL). To linearize such highly non-linear pattern transfer processes, model-based Optical Proximity effect Correction (OPC) is mandatory for both options.
This paper demonstrates the automated generation of the basic mask writing data for both DDL and CPL for arbitrary layouts, followed by model-based OPC, using Calibre for both steps. Sufficient pattern fidelity and pattern robustness (over a 300nm defocus range) has been shown for a gate/polysilicon layer of a 65nm layout. The results were obtained using masks with reasonable mask specifications.
The alert did not successfully save. Please try again later.
J. Andres Torres, Wilhelm Maurer, "Alternatives to alternating phase-shift masks for 65 nm," Proc. SPIE 4889, 22nd Annual BACUS Symposium on Photomask Technology, (27 December 2002); https://doi.org/10.1117/12.467782