Paper
11 March 2003 Development of an advanced uncooled 10-Gb DFB laser for volume manufacture
Author Affiliations +
Abstract
Optical communication systems operating at 10Gbit/s such as 10Gigabit Ethernet are becoming more and more important in Local Area Networks (LAN) and Metropolitan Area Networks (MAN). This market requires optical transceivers of low cost, size and power consumption. This drives a need for uncooled DFB lasers directly modulated at 10Gbit/s. This paper describes the development of a state of the art uncooled high speed DFB laser which is capable of being manufactured in high volume at the low cost demanded by the GbE market. A DFB laser was designed by developing technological building blocks within the 'conventional’ InGaAsP materials system, using existing well proven manufacturing processes modules wherever possible, limiting the design risk to a few key areas where innovation was required. The temperature and speed performance of the InGaAsP SMQW active layer system was carefully optimized and then coupled with a low parasitic lateral confinement system. Using concurrent engineering, new processes were demonstrated to have acceptable process capability within a manufacturing fabrication environment, proving their ability to support high volume manufacturing requirements. The DFB laser fabricated was shown to operate at 100C chip temperature with an open eye at 10Gbit/s operation (with an extinction ratio >5dB). Up to 90C operation this DFB shows threshold current as low as 29mA, optical power as high as 13mW and it meets the 10Gb scaled Ethernet mask with extinction ratio >6dB. It was found that the high temperature dynamic behavior of these lasers could not be fully predicted from static test data. A production test strategy was therefore followed where equipment was designed to fully test devices/subassemblies at 100C and up to 20Gbit/s at key points in the product build. This facilitated the rapid optimisation of product yields upon manufacturing ramp up and minimization of product costs. This state of the art laser is now transferred into volume manufacture.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gordon Burns and Paul M. Charles "Development of an advanced uncooled 10-Gb DFB laser for volume manufacture", Proc. SPIE 4947, Laser Diodes, Optoelectronic Devices, and Heterogenous Integration, (11 March 2003); https://doi.org/10.1117/12.473185
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Manufacturing

Semiconducting wafers

Temperature metrology

Eye

Laser damage threshold

Optics manufacturing

Photomasks

Back to Top