Paper
19 June 2003 High-power monolithic single-mode diode lasers employing active photonic lattices
Dan Botez
Author Affiliations +
Abstract
Photonic-lattice structures with modulated gain, that is active photonic lattices (APLs), of large index steps and gain preferentially enhanced on the low-index lattice sites have been used, as early as 1988, for effective lateral-mode control range in large-aperture (100-200 microns) high-power coherent devices. Photonic-bandpass (PBP) structures relying on long-range resonant leaky-wave coupling, so called ROW arrays, have allowed stable, near-diffraction-limited beam operation to powers as high as 1.6W CW and 10W peak pulsed. Photonic-bandgap (PBG) structures with a built-in lattice defect, so called ARROW lasers, have provided up to 0.5W peak-pulsed stable, single-mode power and hold the potential for 1W CW reliable single-mode operation from apertures 8-10 microns wide. The solution for high-efficiency surface emission, from 2nd-order DFB/DBR lasers, in an orthonormal, single-lobe beam pattern was found in 2000. Recently, single-lobe and single-mode operation in a diffraction-limited beam orthonormal to the chip surface was demonstrated from 1.5mm-long DFB/DBR ridge-guide lasers. That opens the way for the realization of 2-D surface-emitting,2nd-order APLs for the stable generation of watts of CW single-lobe, single-mode power from large 2-D apertures, as well as scalability of such devices at the wafer level.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dan Botez "High-power monolithic single-mode diode lasers employing active photonic lattices", Proc. SPIE 4993, High-Power Fiber and Semiconductor Lasers, (19 June 2003); https://doi.org/10.1117/12.479510
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Semiconductor lasers

High power lasers

Continuous wave operation

Semiconducting wafers

Control systems

Gallium arsenide

Metals

Back to Top