You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 March 2003Measurement methodology for vertically aligned nematic reflective displays
We developed a measurement method for the characteristics of microdisplays specifically aimed at vertically aligned nematic reflective cells. It allows determination of contrast ratio and cell gap, and gives good estimates for the pretilt angle and the elastic surface-coupling constant. The set-up consists of a laser source, high quality polarisers, a beamsplitter mirror, a quarter-wave plate and a sensitive photodiode. A model for the polarization changes in the light caused by each component allows the extraction of the initial phase retardation induced by the cell and gives a first estimate of the thickness. Simulation of the director configuration in liquid crystals is then used to enhance the accuracy by taking into account the properties of a real LC cell. Matching of the simulation and the measurements yields the required values together with a calibrated simulation model.
The alert did not successfully save. Please try again later.
Dieter Cuypers, Herbert De Smet, Geert P. S. Van Doorselaer, Jean Van Den Steen, Andre Van Calster, "Measurement methodology for vertically aligned nematic reflective displays," Proc. SPIE 5002, Projection Displays IX, (28 March 2003); https://doi.org/10.1117/12.473849