You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
The charge-coupled device (CCD) dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that which is realized in currently available devices. Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.
The alert did not successfully save. Please try again later.
James R. Janesick, Tom Elliott, Stewart Collins, Harry Marsh, Morley M. Blouke, Jack Freeman, "The Future Scientific CCD," Proc. SPIE 0501, State-of-the-Art Imaging Arrays and Their Applications, (8 November 1984); https://doi.org/10.1117/12.944641