You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
22 May 2003Detection in power-law noise: spectrum exponents and CD diagram slopes
Normal mammographic image backgrounds have approximately isotropic power spectra of the form, P(f) =K/fe, where f is radial frequency. The values ofthe exponent, 3, range from 1.5 to 3.5 with an average of about 2.8. The ideal observer model predicts that, for signals with certain properties, the log-log contrast-detail (CD) diagram slope, m, is given by: m = O.5(3-2). Previously, we reported results for detection of a model mass (designer nodule) in filtered noise with an exponent of 3. The model and human observer CD slopes were 0.5 and 0.45 respectively. Here, we report preliminary results for human and model observer 2AFC detection of a simple signal in filtered noise with exponents from 1.5 to 3.5. Our results are in good agreement with the prediction of the above equation. We will also describe results of 2AFC detection experiments done using "twin" noise backgrounds with identical noise realizations in the two backgrounds. We could not replicate the results ofJohnson et al. For '1/f3' noise, they found a CD slope of—O.59 while we found +0.37.
Arthur E. Burgess andPhilip F. Judy
"Detection in power-law noise: spectrum exponents and CD diagram slopes", Proc. SPIE 5034, Medical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment, (22 May 2003); https://doi.org/10.1117/12.479974
The alert did not successfully save. Please try again later.
Arthur E. Burgess, Philip F. Judy, "Detection in power-law noise: spectrum exponents and CD diagram slopes," Proc. SPIE 5034, Medical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment, (22 May 2003); https://doi.org/10.1117/12.479974