You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 August 2003GPR antipersonnel mine detection: improved deconvolution and time-frequency feature extraction
This work deals with the processing of GPR (ground penetrating radar) signals for AP (anti-personnel) mine detection. It focuses on two steps in this processing, namely the deconvolution of the system impulse response, and the extraction of target features for classification. The objective of the work is to find discriminant and robust target features by means of time-frequency analysis. Deconvolution is an ill-posed inverse problem, which can be solved with regularization methods. In this paper a deconvolution algorithm, based on the iterative v-method, is proposed. For discriminant feature selection the Wigner distribution (WD) is considered. Singular value decomposition (SVD) along with the concept of the center of mass as the most robust feature are used for feature extraction from the WD. The proposed normalized time-frequency-energetic features have a good discriminant power, which doesn't degrade with increasing object depth.
The alert did not successfully save. Please try again later.
Timofei G. Savelyev, Luc van Kempen, Hichem Sahli, "GPR antipersonnel mine detection: improved deconvolution and time-frequency feature extraction," Proc. SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, (1 August 2003); https://doi.org/10.1117/12.484177