You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 August 2003Quantitative validation testing of magnetoelastic corrosion sensing for bridge cables
Magnetic measurements were performed on steel cables subjected to a magnetic field and the response measured without contact using Faraday's law, to estimate the effect of temperature and corrosion on magnetic properties of structural steel. Magnetic measurements were compared with electrochemical measurements to correlate corrosion quantitatively in terms of mass loss. The results obtained from the present work are helpful in bounding the achievable sensitivity for conventional magnetoelastic corrosion sensing and for suggesting the need for alternate techniques.
Varsha Singh,George M. Lloyd, andMing L. Wang
"Quantitative validation testing of magnetoelastic corrosion sensing for bridge cables", Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, (18 August 2003); https://doi.org/10.1117/12.482770
The alert did not successfully save. Please try again later.
Varsha Singh, George M. Lloyd, Ming L. Wang, "Quantitative validation testing of magnetoelastic corrosion sensing for bridge cables," Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, (18 August 2003); https://doi.org/10.1117/12.482770