You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 September 2003Development of nuclear technique for the detection of landmines
The International Atomic Energy Agency has initiated a Coordinated Research Project (CRP) for the development of nuclear techniques for landmine detection. Out of the fourteen institutes participating in the CRP, twelve are working on neutron-based techniques. Small isotope neutron sources and D-T neutron generators have been used by the researchers. The techniques used include neutron scattering by explosives as well as gamma spectroscopy following the interaction of neutrons with explosives. Neutrons are readily thermalized by hydrogen in explosives and backscattered. Cape Town University, South Africa, and Delft University, Netherlands, have developed instruments based on this principle. Both are portable units and laboratory tests prove their capability to detect dummy landmines (100 g explosive simulant) buried 3-6 cm below dry soil. Further improvements are in progress. Another device, PELAN, developed by the Western Kentucky University, U.S. is based on pulsed fast and thermal neutron activation and has reached a fairly advanced stage of development. The equipment was tested with real mines in a test field in Croatia. In this first series of tests, PELAN could detect antitank mines (5.6 kg explosive) buried 7.5 cm below soil, and antipersonnel mines (200 g explosive) buried 5 cm below soil. More field tests and methods for improving performance are being pursued. The research groups are investigating different facets of the problem such as detector development, Monte Carlo calculations, spectrum unfolding, detector shielding and data analysis.
The alert did not successfully save. Please try again later.
Din Dayal Sood, Ulf Rosengard, Andrej Trkov, "Development of nuclear technique for the detection of landmines," Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, (11 September 2003); https://doi.org/10.1117/12.488322