Paper
30 April 2003 Cross spectra measure of neural signals and noise
Author Affiliations +
Proceedings Volume 5110, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems; (2003) https://doi.org/10.1117/12.500399
Event: SPIE's First International Symposium on Fluctuations and Noise, 2003, Santa Fe, New Mexico, United States
Abstract
Shannon's information rate formula does not work for wideband (aperiodic) signals with nonlinear transfer. The classical signal and noise measures used to characterize stochastic resonance do not work either because their way of distinguishing signal from noise fails. In a study published earlier, a new way of measuring and identifying noise and aperiodic (wideband) signals during strongly nonlinear transfer was introduced. The method was based on using cross-spectra between the input and the output. According to the study, in the case of linear transfer and sinusoidal signals, the method gives the same results as the classical method and in the case of aperiodic signals it gives a sensible measure. In this paper we refine the theory and present detailed simulations which validate and refine the conclusions reached in that study. The simulation results clearly confirm that the cross-spctral identifications of output signal and noise are sensible measures and we put the theory on a firm footing. As neural and ion channel signal transfer is nolinear and aperiodic, the new method has direct applicability in biophysics and neural science.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Swaminathan Sethuraman and Laszlo B. Kish "Cross spectra measure of neural signals and noise", Proc. SPIE 5110, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems, (30 April 2003); https://doi.org/10.1117/12.500399
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Signal to noise ratio

Interference (communication)

LCDs

Nonlinear optics

Stochastic processes

Phase shifts

Resonators

RELATED CONTENT


Back to Top