You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
Hall sensors are used in a very wide range of applications. A very demanding one is electrical current measurement for metering purposes. In addition to high precision and stability, a sufficiently low noise level is required. Cost reduction through sensor integration with low-voltage/low-power electronics is also desirable. The purpose of this work is to investigate the possible use of SOI (Silicon On Insulator) technology for this integration. We have fabricated SOI Hall devices exploring a wide range of silicon layer thickness and doping level. We show that noise is influenced by the presence of LOCOS and p-n depletion zones near the edges of the active zones of the devices. A proper choice of SOI technological parameters and process flow leads to up to 18 dB reduction in Hall sensor noise level. This result can be extended to many categories of devices fabricated using SOI technology.
The alert did not successfully save. Please try again later.
Youcef Haddab, Vincent Mosser, Melanie Lysowec, Jan Suski, Laurent Demeus, Christian Renaux, Stéphane Adriensen, Denis Flandre, "Low-noise SOI Hall devices," Proc. SPIE 5115, Noise and Information in Nanoelectronics, Sensors, and Standards, (8 May 2003); https://doi.org/10.1117/12.490185