You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 August 2003Automatic inspection tool sensitivity with characterization of AAPSM defects
As AAPSM becomes more widely utilized, the need for defect inspection sensitivity becomes more critical. In addition, accurate defect characterization must be performed to encompass new effects caused by glass defects. Historically, defect size and position have been the two characteristics that were examined when determining inspection tool sensitivity. Because of the nature of AAPSM defects, phase is a factor that must be taken into account. This experiment utilizes two distinct forms of defect characterization -- SEM sizing, and surface profilometry. Programmed defect test masks were manufactured for phase shifting properties at both 248nm and 193nm exposure wavelengths. The defects were also etched at multiple depths resulting in a variety of phase angle errors. Utilizing the two characterization methods mentioned above, the automatic defect inspection tool's sensitivity on multiple programmed defects will be investigated.
The alert did not successfully save. Please try again later.
Darren Taylor, Eric Poortinga, Bryan W. Reese, Blake C. Gibson, "Automatic inspection tool sensitivity with characterization of AAPSM defects," Proc. SPIE 5130, Photomask and Next-Generation Lithography Mask Technology X, (28 August 2003); https://doi.org/10.1117/12.504204