You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 December 2003Raman water-vapor lidar implemented on an existing lidar system in the southern tropics
A Raman lidar dedicated to night-time tropospheric water-vapor high-resolution measurements is currently being developed at Réunion island in the south-western Indian Ocean. To our knowledge, it is the first permanent instrument of its kind in this tropical region. The geophysical and instrumental interests and issues on the radiative, dynamical and chemical plans for such a measurement, specially in the tropics, are obvious. The choice of a visible laser excitation wavelength was initially a constraint, in view of the weakness of the Raman scattering process that is the basis of the development of this instrument, but many arguments also plead for such a choice. After describing the water-vapor measurement method of this lidar, which is straightforward in principle, we stress on the main delicate underlying issues related to this method. A precise description of the optical parts of the lidar system is then given that emphasizes the importance of the rejection of the elastically backscattered signals in the Raman channels. Finally, we list the most important future works concerning the validation and calibration stages of this instrument that is intended to become an atmospheric surveillance instrument on a medium term.
The alert did not successfully save. Please try again later.
Laurent Robert, Philippe Keckhut, Jean Leveau, Fabrice Chane-Ming, Jacques Porteneuve, "Raman water-vapor lidar implemented on an existing lidar system in the southern tropics," Proc. SPIE 5154, Lidar Remote Sensing for Environmental Monitoring IV, (23 December 2003); https://doi.org/10.1117/12.504721