You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 January 2004Calibration of the University of Hawaii's airborne hyperspectral imager
The University of Hawaii’s Airborne Hyperspectral Imager (AHI) consists of a long-wave infrared pushbroom hyperspectral imager and a boresighted 3-color visible high resolution CCD linescan camera. A new data system was added to the AHI in a recent upgrade of the sensor, resulting in the ability to collect data at full resolution in 256 spectral channels. This upgrade motivated the design of a new calibration procedure that removes image distortion and bad pixels from the produced imagery. The approach used is a novel method using a runtime-calculated transform. This transform describes the means of converting the distorted AHI focal plane into a corrected “virtual” AHI focal plane. The transform is formulated using several spatial-statistical assumptions as to the way information varies on the focal plane, and is based on geostatistical interpolation techniques. This transform removes the distortion present in the AHI imager and delivers high quality imagery.
The alert did not successfully save. Please try again later.
Michael E. Winter, Paul G. Lucey, Tim Williams, Mark Wood, "Calibration of the University of Hawaii's airborne hyperspectral imager," Proc. SPIE 5159, Imaging Spectrometry IX, (7 January 2004); https://doi.org/10.1117/12.510198