You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 February 2004Conjugated polymer composites for use in electrophosphorescent light-emitting diodes
High performance electrophosphorescent light emitting diodes (LEDs) were demonstrated by using conjugated polymers, poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO), PFO end-capped with hole-transporting moieties (HTM), PFO-HTM, and PFO end-capped with electron-transporting moieties (ETM), PFO-ETM, as the hosts and the organometallic emitter, tris-[2,5-bis-2'-(9,9'-dihexylfluorene) iridium] [Ir(HFP)3] as the guest. Electrophosphorescent LEDs fabricated from PFO, PFO-HTM, and PFO-ETM as the hosts emit red light with turn-on voltage around 5V, luminances (L) of 2040 cd/m2, 1937 cd/m2 and 2487 cd/m2 at 290 mA/cm2 (16 V), and luminance efficiencies (LE) of 1.40 cd/A, 1.38 cd/A and 1.80 cd/A at 4.5 mA/cm2 for PFO, PFO-HTM, and PFO-ETM, respectively. The results demonstrate that high performance electrophosphorescence can be obtained from conjugated polymer-based LEDs that are fabricated by processing the active materials directly from solution.
The alert did not successfully save. Please try again later.
Xiong Gong, Wanli Ma, Jacek C. Ostrowski, Guillermo C. Bazan, Daniel Moses, Alan J. Heeger, "Conjugated polymer composites for use in electrophosphorescent light-emitting diodes," Proc. SPIE 5214, Organic Light-Emitting Materials and Devices VII, (16 February 2004); https://doi.org/10.1117/12.515221