You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 October 2003An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection
Metal film over nanosphere (MFON) electrodes are excellent substrates for surface-enhanced Raman scattering (SERS) spectroscopy. These surfaces are produced by vapor deposition of a metal film over nanospheres that are assembled in a hexagonally close packed arrangement. The efficiency and reproducibility of AgFON electrode as SERS substrates are confirmed by the repeatability of the electrochemical surface enhanced Raman scattering spectra of pyridine and the Ru(bpy)33+/Ru(bpy)32+ complexes adsorbed on AgFON electrodes. The Raman signal for AgFON electrodes is observed to be extremely stable even at extremely negative potentials in both aqueous and nonaqueous electrolytes. Recent reports have indicated that SERS enhancement factors of up to 14 orders of magnitude can be achieved, providing the sensitivity requisite for ultra trace level detection of target analytes. For this reason, we are developing a method for bacterial endospore SERS detection based on the endospores marker -- dipicolinic acid (DPA). The SERS spectra of dipicolinic acid in aqueous solutions are reported. The dipicolinate vibrational features could be observed in the SERS spectra at the concentration as low as 8 × 10-5 M in 5 minutes. These limits of detection are entirely controlled by the thermodynamics and kinetics of DPA binding to the AgFON surface.
The alert did not successfully save. Please try again later.
Xiaoyu Zhang, Chanda Ranjit Yonzon, Richard P. Van Duyne, "An electrochemical surface-enhanced Raman spectroscopy approach to anthrax detection," Proc. SPIE 5221, Plasmonics: Metallic Nanostructures and Their Optical Properties, (28 October 2003); https://doi.org/10.1117/12.508519