You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 December 2003Optical critical dimension (OCD) measurments for profile monitoring and control: applications for mask inspection and fabrication
Optical Critical Dimension (OCD) measurements using Normal-Incidence Spectroscopic Ellipsometry (polarized reflectance) allow for the separation of transverse electric and transverse magnetic modes of light reflected from an anisotropic sample as found in a periodic grating structure. This can provide the means for determining linewidths and analyzing complex profiles for a variety of structures found in mask fabrication. The normal-incidence spectroscopic ellipsometer maintains much of the simplicity in mechanical design found in a standard reflectometer and the additional polarizing element has no effect on the footprint making the system amenable for integration, inline monitoring and advanced process control. The rigourous coupled wave analysis (RCWA) method provides an exact method for calculating the diffraction of electromagnetic waves by periodic grating structures. We have extended OCD technology to critical measurement points in the mask fabrication process: After development inspection (ADI), where OCD evaluates mask writer performance and after etch inspection (AEI) for monitoring and control of etched quartz structures for phase shift applications. The determination of important, critical dimensions via optical techniques is appealing for several reasons: the method is non-destructive to photoresist and the sample is not subject to charging effects; the technique is capable of measuring the critical dimensions of grating structures down to approximately 40 nm; minimal facilities are required for installation (no high vacuum, cooling or shielding of electromagnetic fields); like optical thin film metrology, OCD technology can be integrated into process tools enabling Advanced Process Control (APC) of the etch process. Results will be presented showing the capabilities of OCD metrology for ADI and AEI applications. Comparisons will be made with both CD-SEM and X-SEM and the application to monitoring/controlling the quartz etch process will be discussed.
Ray J. Hoobler andEbru Apak
"Optical critical dimension (OCD) measurments for profile monitoring and control: applications for mask inspection and fabrication", Proc. SPIE 5256, 23rd Annual BACUS Symposium on Photomask Technology, (17 December 2003); https://doi.org/10.1117/12.517931
The alert did not successfully save. Please try again later.
Ray J. Hoobler, Ebru Apak, "Optical critical dimension (OCD) measurments for profile monitoring and control: applications for mask inspection and fabrication," Proc. SPIE 5256, 23rd Annual BACUS Symposium on Photomask Technology, (17 December 2003); https://doi.org/10.1117/12.517931