You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 December 2003Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices
The surface layer of InP-based quantum well (QW) laser structures were implanted with As or P ions at energies ranging from 200 to 360 keV. The structures were then annealed at temperatures ranging from 650 to 750°C during 120s, allowing the defects created by implantation to diffuse, resulting in intermixing at the barrier-QW interfaces. The consequence of the intermixing is the blue shift of the QW photoluminescence wavelength. The blue shfit was studied as a function of the implantation temperature (25 or 200°C). Implantation-induced damage in the samples was characterized by Rutherford Backscattering in channeling mode (RBS-c) and correlated with the observed blue shift. It is found that blue shift is more efficient at higher implantation temperature, even if the resulting defect concentration is much lower. This is attributed to the diffusion of defects during high-temperature implantation, leading to a larger region containing defects contributing to intermixing. Also, when the implanted dose is too high, no blue shift is observed. This could be due to the formation of defect clusters that inhibit the subsequent diffusion of defects. Finally, the defect creation mechanisms within InP and InGaAs layers are found to have a significant impact on the resulting wavelength blue shift.
The alert did not successfully save. Please try again later.
Martin Chicoine, Alexandre Francois, C. Tavares, S. Chevobbe, Francois Schiettekatte, Vincent Aimez, Jacques Beauvais, Jean Beerens, "Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices," Proc. SPIE 5260, Applications of Photonic Technology 6, (15 December 2003); https://doi.org/10.1117/12.543537