You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 February 2004Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar
A novel windowless chamber was developed to allow aerosol backscatter measurements with a frequency-agile CO2 lidar. The chamber utilizes curtains of air to contain the cloud, thus preventing the inevitable backscatter off of conventional windows from corrupting the desired measurements. This feature is critical because the CO2 lidar has a long (1 μs) pulse and the backscatter off the window cannot be temporally separated from the backscatter off the aerosol in the chamber. The chamber was designed for testing with a variety of CB simulants and interferents in both vapor and aerosol form and has been successfully shown to contain a cloud of known size, concentration, and particle size distribution for 10-15 minutes. This paper shows the results using Arizona road dust that was screened by the manufacturer into 0-3 μm and 5-10 μm particle size distributions. The measurements clearly show the effect of size distribution on the infrared backscatter coefficients as well as the dynamic nature of the size distribution for a population of aerosols. The test methodology and experimental results are presented.
The alert did not successfully save. Please try again later.
Richard Vanderbeek, Kristan Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, Chemical and Biological Standoff Detection, (27 February 2004); https://doi.org/10.1117/12.519106