You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 March 2004Microsphere-based DNA biosensor arrays
A microsphere-based DNA biosensor array with high packing density and low detection limits has been previously developed. Polymeric 3.1-μm-diameter microspheres are employed as the detection elements, where each microsphere is functionalized with single-stranded oligonucleotide probe sequences. The biosensor array is fabricated by randomly distributing a stock microsphere suspension, containing various oligonucleotide-functionalized microspheres, on the distal end of a chemically etched imaging fiber bundle. By placing the microspheres into wells at the end of each individual fiber, each optical channel is connected to a single microsphere. The microspheres are encoded with a unique combination of dyes in order to determine a particular microsphere’s location in the randomized array. Specific fluorescence responses are observed after hybridization with fluorescently labeled complementary targets. Enhancement of the signal to noise ratio is possible because of intrinsic redundancy of sensing elements built into the array. This microsphere-based DNA biosensor has several major advantages over existing platforms including higher sensitivity, micron-sized features, and rapid throughput. Microsphere-based DNA arrays have been successfully applied to genomic discrimination of bacteria, gene expression analysis, and the detection of bioagents.
The alert did not successfully save. Please try again later.
Linan Song, Jason Epstein, David R. Walt, "Microsphere-based DNA biosensor arrays," Proc. SPIE 5269, Chemical and Biological Point Sensors for Homeland Defense, (8 March 2004); https://doi.org/10.1117/12.516152