You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 March 2004Surface-enhanced Raman spectroscopy for homeland defense
Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique that enables trace detection of analytes of relevance using fieldable equipment. SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate, generally gold, silver, or copper. Coupled to a microscope, single molecule detection has been demonstrated. With a fieldable instrument, enhancements of 108 compared to unenhanced Raman spectroscopy are expected, allowing trace detection in the field. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest. In this presentation, we will discuss applications under development at EIC Laboratories that are of importance to Homeland Defense. We will review the capabilities of SERS to detect buried explosives, explosives associated with nuclear weaponry and chemicals involved in the nuclear enrichment process. We will discuss the detection of chemical and biological warfare agents in the water supply in research performed under the Joint Service Agent Water Monitor. We will demonstrate the current detection limits, the reproducibility of the signal, and results collected using actual chemical warfare agents, and show how the results can be extended to vapor detection. We will also discuss the current state-of-the art for fieldable instrumentation. The emphasis on portability and speed will be stressed; SERS acquisitions are restricted to 30 s or less.
The alert did not successfully save. Please try again later.
Kevin M. Spencer, James M. Sylvia, Peter J. Marren, Jane F. Bertone, Steven D. Christesen, "Surface-enhanced Raman spectroscopy for homeland defense," Proc. SPIE 5269, Chemical and Biological Point Sensors for Homeland Defense, (8 March 2004); https://doi.org/10.1117/12.514845