You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 April 2004A simple and efficient dynamic modeling method for compliant micropositioning mechanisms using flexure hinges
In this paper we consider the dynamic modelling of compliant micropositioning mechanisms using flexure hinges. A simple modelling method is presented that is particularly useful for modelling parallel micropositioning mechanisms. This method is based upon linearisation of the geometric constraint equations of the compliant mechanism. This results in a linear kinematic model, a constant Jacobian and linear dynamic model. To demonstrate the computational simplicity of this methodology it is applied to a four-bar linkage using flexure hinges. Comparisons are made between the simple dynamic model and a complete non-linear model derived using the Lagrangian method. The investigation reveals that this new model is accurate yet computationally efficient and simple to use. The method is then further applied to a parallel 3-degree of freedom (dof) mechanism. It is shown that the method can be simply applied to this more complex parallel mechanism. A dynamic model of this mechanism is desired for use in optimal design and for controller design.
The alert did not successfully save. Please try again later.
Daniel C. Handley, Tien-Fu Lu, Yuen Kuan Yong, Chris W. J. Zhang, "A simple and efficient dynamic modeling method for compliant micropositioning mechanisms using flexure hinges," Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); https://doi.org/10.1117/12.523573