Translator Disclaimer
18 January 2004 Possibilistic-clustering-based MR brain image segmentation with accurate initialization
Author Affiliations +
Proceedings Volume 5308, Visual Communications and Image Processing 2004; (2004)
Event: Electronic Imaging 2004, 2004, San Jose, California, United States
Magnetic resonance image analysis by computer is useful to aid diagnosis of malady. We present in this paper a automatic segmentation method for principal brain tissues. It is based on the possibilistic clustering approach, which is an improved fuzzy c-means clustering method. In order to improve the efficiency of clustering process, the initial value problem is discussed and solved by combining with a histogram analysis method. Our method can automatically determine number of classes to cluster and the initial values for each class. It has been tested on a set of forty MR brain images with or without the presence of tumor. The experimental results showed that it is simple, rapid and robust to segment the principal brain tissues.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Qingmin Liao, Yingying Deng, Weibei Dou, Su Ruan, and Daniel Bloyet "Possibilistic-clustering-based MR brain image segmentation with accurate initialization", Proc. SPIE 5308, Visual Communications and Image Processing 2004, (18 January 2004);

Back to Top