You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 January 2004Systematic lossy forward error protection for error-resilient digital video broadcasting
We present a novel scheme for error-resilient digital video broadcasting,using the Wyner-Ziv coding paradigm. We apply the general framework of systematic lossy source-channel coding to generate a supplementary bitstream that can correct transmission errors in the decoded video waveform up to a certain residual distortion. The systematic portion consists of a conventional MPEG-coded bitstream, which is transmitted over the error-prone channel without forward error correction.The supplementary bitstream is a low rate representation of the transmitted video sequence generated using Wyner-Ziv encoding. We use the conventionally decoded error-concealed MPEG video sequence as side information to decode the Wyner-Ziv bits. The decoder combines the error-prone side information and the Wyner-Ziv description to yield an improved decoded video signal. Our results indicate that, over a large range of channel error
probabilities, this scheme yields superior video quality when compared with traditional forward error correction techniques employed in digital video broadcasting.
The alert did not successfully save. Please try again later.
Shantanu D. Rane, Anne Aaron, Bernd Girod, "Systematic lossy forward error protection for error-resilient digital video broadcasting," Proc. SPIE 5308, Visual Communications and Image Processing 2004, (18 January 2004); https://doi.org/10.1117/12.527301